DOI: 10.46765/2675-374X.2023V4N1P196 CONSENSUS UPDATE ## RECOMMENDATIONS FOR SCREENING AND MANAGEMENT OF ENDOCRINOPATHIES AFTER PEDIATRIC HEMATOPOIETIC STEM CELL TRANSPLANTATION Adriana Aparecida Siviero-Miachon^{1*}, Paulo Alonso Garcia Alves-Junior^{2*}, Angela Maria Spinola-Castro³, Maria Alice Neves Bordallo⁴ - 1. Federal University of Sao Paulo UNIFESP/EPM, Support Group for Adolescents and Children with Cancer GRAACC, and Association for Children and Adolescents with Cancer TUCCA/Santa Marcelina - 2. National Institute of Cancer Ministry of Health (INCA) - 3. UNIFESP/EPM, GRAACC and TUCCA/Santa Marcelina - 4. Federal University of Rio de Janeiro UFRJ, and INCA - *Both authors contributed equally to this paper Corresponding author: Angela Maria Spinola-Castro - angela.spinola@unifesp.br Received: 07 Feb 2023 • Revised: 10 Feb 2023 • Accepted: 25 Feb 2023. ## **ABSTRACT** Endocrine disorders after pediatric hematopoietic stem cell transplantation result from the interaction between the underlying disease, host characteristics and treatment, including exposure to pre- and peri-transplant agents (chemotherapy and radiotherapy). In addition, post-transplantation factors, including graft-versus-host disease, and its treatment, especially glucocorticoids, also contribute to hormone deficiencies or endocrine disorders. Endocrinological alterations can be divided into six main groups: 1) Growth disorders; 2) Thyroid diseases; 3) Gonadal dysfunction; 4) Adrenal failure; 5) Osteometabolic disorders; 6) Obesity and metabolic syndrome. The purpose of this article is to update screening recommendations and management approaches for the various endocrine diseases, defining populations at risk, recommendations during follow-up, and treatment strategies, with attention to controversial issues. **KEYWORDS:** Bone Marrow Transplantation. Graft vs Host Disease. Glucocorticoids. Growth Disorders. Adrenal Insufficiency. Thyroid gland/radiation effects. Gonads/drug effects. Adiposity. Atherosclerosis. Bone and bones/metabolism. ## **INTRODUCTION** Endocrinological disorders after pediatric hematopoietic stem cell transplantation (HSCT) result from the synergistic interaction between the underlying disease, host characteristics, exposure to pre- and peri-HSCT factors (chemotherapeutic agents, conditioning and radiotherapy regimen, RT) and post-HSCT factors, including graft-versus-host disease (GVHD) and its treatment.¹⁻⁴ Endocrinopathies are the most frequent late effects associated with HSCT, with almost 60% of those affected having had HSCT before 10 years of age, and onset between 0.8 to 9.5 years after HSCT. They are divided into six main groups: 1) Growth disorders; 2) Thyroid diseases; 3) Gonadal dysfunction; 4) Adrenal failure; 5) Osteometabolic disorders; 6) Obesity and metabolic syndrome. 1-4 The goal of this paper is to present, in Tables 1 and 2 (attached), a summary of the recommendations of the 2020/2021 Consensus¹, with revised aspects, supported by retrospective studies and international guidelines, and/or experience with non-transplanted patients, in order to define populations at risk and management strategies for the follow-up and treatment of endocrinopathies after HSCT, with attention to controversial issues.⁴⁻¹⁰ **TABLE 1 -** Screening recommendations for endocrinopathies after pediatric hematopoietic stem cell transplantation (HSCT) | Endocrinopathy | Related treatments | Population at risk | How to do the screening? | Frequency | |--------------------------------|--|---|--|--| | Growth disturbances | Cranial RT
TBI
Glucocorticoid | Growing phase
and exposed to the
related treatments | Clinic: height, BMI, growth velocity,
target height, Tanner stage
Imaging: bone age
Laboratory: FT4 and TSH, GH/IGF-
1axis | Every 6 months | | Thyroid diseases | Cervical RT
Cranial and/or
craniospinal RT
TBI | Exposed to the related treatments | Clinic: thyroid palpation
Laboratory: FT4 and TSH
Imaging: thyroid US (controversial) | Yearly, start 1 year
after HSCT | | Gonadal dysfunction | Cranial and/or pelvic/
testicular RT
TBI
Alkylating drugs
Heavy metals | Exposed to the related treatments | Clinic: Tanner stage
Laboratory:
Female > 12-13 years: E2, LH, FSH
Male > 13-14 years: T, LH, FSH
Semen analysis (fertility) | Yearly | | Adrenal failure | Glucocorticoid
Cranial RT | Exposed to high
and prolonged
glucocorticoid
doses (GVHD)
Cranial RT (rare) | Clinic: fatigue, anorexia, nausea,
vomiting, weight loss, hypotension
Laboratory: hyponatremia,
hyperkalemia and hypoglycemia | After glucocorticoid
therapy
discontinuation and
cranial RT (yearly) | | Osteometabolic
disturbances | Cranial RT and/or TBI
Glucocorticoid
Metotrexate
Calcineurin inhibitors | All survivors | Bone mineral density (DXA) | Start 1 year after
HSCT
Repeat according to
detected alteration | | Obesity and metabolic syndrome | Cranial RT
TBI | All survivors | Clinic: BMI, circumferences and
blood pressure
Laboratory: glucose, insulin,
HOMA1-IR, glycated hemoglobin
(HbA1c), lipids | Clinic: yearly
Laboratory: every 2
years. If alteration,
individualize each
case | **Abbreviations:** RT: radiotherapy; TBI: total body irradiation; BMI: body mass index; FT4: free thyroxin; TSH: thyroid-stimulating hormone; GH: growth hormone; IGF-1: insulin-like growth factor 1; US: ultrasound; E2: estradiol; LH: luteinizing hormone; FSH: follicle-stimulating hormone; T: total testosterone; GVHD: graft-versus-host disease; DXA: dual energy x-ray absorciometry; HOMA1-IR: homeostase model assessment-insulin resistance. Adapted from van Iersel et al., 2021; Paetow et al., 2020 and Chow et al., 2016. _____ JBMTCT. 2023 4(1) _______ **59** ____ **TABLE 2 -** Management of endocrinopathies after hematopoietic stem cell transplantation (HSCT) | Endocrinopathy | General considerations | Complementary exams | How to treat? | Observations/controversies | |--------------------------------------|--|--|--|---| | GH deficiency | Investigate nutritional
and pubertal disorders, or
hypothyroidism
Spinal RT: measure sitting
height
Pubertal spurt poor (limited
trunk growth) | Bone age
FT4 and TSH
GH stimulation tests
IGF-1 | rhGH replacement
after discussion of
risks and benefits with
oncologist and family | Recurrence and second
malignancy
No strategy improves
pubertal growth
No recommendation for
short stature and non-GH
deficient children | | Hypothyroidism | Investigate graft donor-related autoimmune disease | FT4 and TSH
Antithyroid antibodies | Sodium levothyroxin in
overt hypothyroidism
(TSH > 10 mIU/L) | There is no recommendation
for treatment of borderline
TSH (5-10 mIU/L) with
normal FT4
Thyroid cancer risk | | Thyroid cancer | Thyroid nodules or cervical
lymph nodes in a thyroid
exposed to RT
Therapeutic 131-I-MIBG | US-guided fine needle
aspiration (FNA) of
suspicious nodule | Equal to thyroid
cancer in the
general population:
thyroidectomy and
therapeutic iodine if
necessary | US in screening for nodules
is controversial | | Ovarian failure | Age of onset and progression of puberty, menstrual history, and libido Ovary poorly resistant to drugs and RT (hormonal and germ portions are equally impaired) Precocious menopause | E2, FSH, LH | E2 to induce puberty (adolescents) and improve bone, heart and psychological health in young adults Discuss fertility preservation: specialist services | Hormone replacement: transdermal route if thrombosis No increased risk of relapse or breast cancer Fertility preservation in prepubescent still limited | | Male
hypogonadism | Age of onset and progression of puberty, signs of hypoandrogenism Testicle is compartmentalized: Leydig is more resistant than Sertoli Alkylating drugs impair testis growth (germ epithelium) | T, LH (Leydig function
indicates hormone
production)
FSH (Sertoli function
indicates fertility)
Sperm analysis (fertility, if
desired) | Many male presents with spontaneous puberty and satisfactory hormone production despite infertility (Leydig function more resistant than Sertoli) Discussion of fertility preservation | T concentration that indicates replacement still controversial, consider if T < 300 ng/dL Fertility preservation in prepubescent still limited | | Adrenal failure | Chronic fatigue, weakness,
anorexia, nausea, vomiting,
weight loss, postural
hypotension, hyponatremia,
hypokalemia, and
hypoglycemia | Cortisol, ACTH and/or
ACTH stimulation test | Discontinuation of
prolonged high-dose
glucocorticoid therapy
should be gradual
Consider "stress dose"
during acute illness | Adrenal function usually recovers once exogenous glucocorticoid therapy is discontinued, but recovery time is variable | | Low bone mineral
density | Nutritional status and lifestyle
Rule out hormone deficiency
(hypogonadism and GH
deficiency)
Effect of medications
(glucocorticoid) | 250H vitamin D
Calcium, phosphorus,
alkaline phosphatase, PTH
and renal function
DXA | Improve calcium intake and physical activity, encourage sun exposure if possible Vitamin D deficiency and other hormone deficits should be treated | Consider bisphosphonate
if: Z-score < -2.0 (child) or
T-score < -2.5 (adult), and/or
multiple fractures
Ideal regimen not yet
defined | | Obesity and
metabolic
syndrome | Sarcopenic obesity: assessing body composition and fat distribution Consider atherosclerosis and premature cardiovascular risk (epidemiological) Family history and lifestyle | Blood pressure
Glucose, insulin and
HOMA1-IR
Glycated hemoglobin
(HbA1C)
Lipids | Healthy lifestyle: food
and physical activity | Pharmacotherapy in obesity
and insulin resistance
Treatment of hypertension
and dyslipidemia follows
specific consensus | Abbreviations: GH: growth hormone; RT: radiotherapy; FT4: free thyroxin; TSH: thyroid-stimulating hormone; IGF-1: insulin-like growth factor 1; rhGH: recombinant human GH; MIBG: metaiodobenzilguanidine; US: ultrasound; E2: estradiol; LH: luteinizing hormone; FSH: follicle-stimulating hormone; T: total testosterone; ACTH: adrenocorticotropic hormone; PTH: parathyroid hormone; DXA: dual energy x-ray absorciometry; HOMA1-IR: homeostase model assessment-insulin resistance. Adapted from van lersel et al. 2021; Paetow et al., 2020 and Chow et al., 2016. ____ JBMTCT. 2023 4(1) _______ **60** _____ ## **REFERENCES** - 1. Siviero-Miachon AA, Alves PA Junior, Spinola-Castro AM, Bordallo MA. Endocrinopathies after pediatric HSCT: screening recommendations and management. JBMTCT. 2021;4(1):218-25. - Rovó A, Tichelli A; Late Effects Working Party of the European Group for Blood and Marrow Transplantation. Cardiovascular complications in long-term survivors after allogeneic hematopoietic stem cell transplantation. Semin Hematol. 2012;49(1):25-34. - Majhail NS, Rizzo JD, Lee SJ, et al. Recommended screening and preventive practices for long-term survivors after hematopoietic cell transplantation. Hematol Oncol Stem Cell Ther. 2012;47(3):337-41. - Paetow U, Bader P, Chemaitilly W. A systematic approach to the endocrine care of survivors of pediatric hematopoietic stem cell transplantation. Cancer Metastasis Rev. 2020;39(1):69-78. - Akirov A, Sawka AM, Ben-Barouch S, et al. Endocrine complications in patients with GVHD. Endocr Pract. 2019;25(5):485-90. - Chow EJ, Anderson L, Baker KS, et al. Late effects surveillance recommendations among survivors of childhood hematopoietic cell transplantation: a Children's Oncology Group report. Biol Blood Marrow Transplant. 2016;22(5):782-95. - 7. Sanders JE. Endocrine complications of high-dose therapy with stem cell transplantation. Pediatr Transplant. 2004;8(Suppl 5):39-50. - 8. Chemaitilly W, Sklar CA. Endocrine complications of hematopoietic stem cell transplantation. Endocrinol Metab Clin N Am. 2007;36(4):983-98. - 9. Shalitin S, Pertman L, Yackobovitch-Gavan M, et al. Endocrine and metabolic disturbances in survivors of hematopoietic stem cell transplantation in childhood and adolescence. Horm Res Paediatr. 2018;89(2):108-21. - 10. van Iersel L, Mulder RL, Denzer C, Cohen LE, Spoudeas HA, Meacham LR, et al. Hypothalamic-pituitary and other endocrine surveillance among childhood cancer survivors. Endocr Rev. 2022;43(5):794-823. JBMTCT. 2023 4(1) ________ **61** ____